1. Po raz pierwszy odwiedzasz EDU. LEARN

    Odwiedzasz EDU.LEARN

    Najlepszym sposobem na naukę języka jest jego używanie. W EDU.LEARN znajdziesz interesujące teksty i videa, które dadzą Ci taką właśnie możliwość. Nie przejmuj się - nasze filmiki mają napisy, dzięki którym lepiej je zrozumiesz. Dodatkowo, po kliknięciu na każde słówko, otrzymasz jego tłumaczenie oraz prawidłową wymowę.

    Nie, dziękuję
  2. Mini lekcje

    Podczas nauki języka bardzo ważny jest kontekst. Zdjęcia, przykłady użycia, dialogi, nagrania dźwiękowe - wszystko to pomaga Ci zrozumieć i zapamiętać nowe słowa i wyrażenia. Dlatego stworzyliśmy Mini lekcje. Są to krótkie lekcje, zawierające kontekstowe slajdy, które zwiększą efektywność Twojej nauki. Są cztery typy Mini lekcji - Gramatyka, Dialogi, Słówka i Obrazki.

    Dalej
  3. Wideo

    Ćwicz język obcy oglądając ciekawe filmiki. Wybierz temat, który Cię interesuje oraz poziom trudności, a następnie kliknij na filmik. Nie martw się, obok każdego z nich są napisy. A może wcale nie będą Ci one potrzebne? Spróbuj!

    Dalej
  4. Teksty

    Czytaj ciekawe artykuły, z których nauczysz się nowych słówek i dowiesz więcej o rzeczach, które Cię interesują. Podobnie jak z filmikami, możesz wybrać temat oraz poziom trudności, a następnie kliknąć na wybrany artykuł. Nasz interaktywny słownik pomoże Ci zrozumieć nawet trudne teksty, a kontekst ułatwi zapamiętanie słówek. Dodatkowo, każdy artykuł może być przeczytany na głos przez wirtualnego lektora, dzięki czemu ćwiczysz słuchanie i wymowę!

    Dalej
  5. Słowa

    Tutaj możesz znaleźć swoją listę "Moje słówka", czyli funkcję wyszukiwania słówek - a wkrótce także słownik tematyczny. Do listy "Moje słówka" możesz dodawać słowa z sekcji Videa i Teksty. Każde z słówek dodanych do listy możesz powtórzyć później w jednym z naszych ćwiczeń. Dodatkowo, zawsze możesz iść do swojej listy i sprawdzić znaczenie, wymowę oraz użycie słówka w zdaniu. Użyj naszej wyszukiwarki słówek w części "Słownictwo", aby znaleźć słowa w naszej bazie.

    Dalej
  6. Lista tekstów

    Ta lista tekstów pojawia się po kliknięciu na "Teksty". Wybierz poziom trudności oraz temat, a następnie artykuł, który Cię interesuje. Kiedy już zostaniesz do niego przekierowany, kliknij na "Play", jeśli chcesz, aby został on odczytany przez wirtualnego lektora. W ten sposób ćwiczysz umiejętność słuchania. Niektóre z tekstów są szczególnie interesujące - mają one odznakę w prawym górnym rogu. Koniecznie je przeczytaj!

    Dalej
  7. Lista Video

    Ta lista filmików pojawia się po kliknięciu na "Video". Podobnie jak w przypadku Tekstów, najpierw wybierz temat, który Cię interesuje oraz poziom trudności, a następnie kliknij na wybrane video. Te z odznaką w prawym górnym rogu są szczególnie interesujące - nie przegap ich!

    Dalej
  8. Dziękujemy za skorzystanie z przewodnika!

    Teraz już znasz wszystkie funkcje EDU.LEARN! Przygotowaliśmy do Ciebie wiele artykułów, filmików oraz mini lekcji - na pewno znajdziesz coś, co Cię zainteresuje!

    Teraz zapraszamy Cię do zarejestrowania się i odkrycia wszystkich możliwości portalu.

    Dziękuję, wrócę później
  9. Lista Pomocy

    Potrzebujesz z czymś pomocy? Sprawdź naszą listę poniżej:
    Nie, dziękuję

Już 62 359 użytkowników uczy się języków obcych z Edustation.

Możesz zarejestrować się już dziś i odebrać bonus w postaci 10 monet.

Jeżeli chcesz się dowiedzieć więcej o naszym portalu - kliknij tutaj

Jeszcze nie teraz

lub

Poziom:

Wszystkie

Nie masz konta?

George Whitesides: A lab the size of a postage stamp


Poziom:

Temat: Społeczeństwo i nauki społeczne

The problem that I want to talk with you about
is really the problem of
how does one supply healthcare
in a world in which cost is everything.
How do you do that?
And the basic paradigm we want to suggest to you,
I want to suggest to you is,
one in which you say that in order to
treat disease you have to first know what you're treating --
that's diagnostics -- and then you have to do something.
So, the program that we're involved in is something which we call
diagnostics for all, or zero-cost diagnostics.
How do you provide medically relevant information
at as close as possible to zero cost? How do you do it?
Let me just give you two examples.
The rigors of military medicine
are not so dissimilar from the third world,
poor resources, a rigorous environment,
a series of problems in light weight, and things of this kind.
And also not so different from the home healthcare
and diagnostic system world.
So, the technology that I want to talk about
is for the third world, for the developing world,
but it has, I think, much broader application,
because information is so important in the healthcare system.
So, you see two examples here.
One is a lab that is actually a fairly high end laboratory in Africa.
The second is basically an entrepreneur
who is set up and doing who knows what in a table in a market.
I don't know what kind of healthcare is delivered there.
But it's not really what is probably most efficient.
What is our approach?
And the way in which one typically approaches
a problem of lowering cost,
starting from the perspective of the United States,
is to take our solution,
and then to try to cut cost out of it.
No matter how you do that
you're not going to start with 100,000 dollar instrument
and bring it down to no cost. It isn't going to work.
So, the approach that we took was the other way around.
To ask, "What is the cheapest possible stuff
that you could make a diagnostic system out of,
and get useful information,
add function?" And what we've chosen is paper.
What you see here is a prototypic device.
It's about a centimeter on the side.
It's about the size of a fingernail.
The lines around the edges are
a polymer.
It's made of paper, and paper of course wicks fluid.
As you know, paper, cloth, drop wine on the table cloth,
and the wine wicks all over everything.
Put it on your shirt, it ruins the shirt.
That's what a hydrophilic surface does.
So, in this device the idea is that you drip
the bottom end of it in a drop of,
in this case, urine.
The fluid wicks its way into those chambers at the top.
The brown color indicates the amount of glucose in the urine.
The blue color indicates the amount of protein in the urine.
And the combination of those two,
is a first order shot at a number of
useful things that you want.
So, this is an example of a device made from a simple piece of paper.
Now, how simple can you make the production?
Why do we choose paper?
There is an example of the same thing, on a finger
showing you basically what it looks like.
One reason for using paper is that it's everywhere.
We have made these kinds of devices using
napkins and toilet paper
and wraps, and all kinds of stuff.
So, the production capability is there.
The second is, you can put lots and lots
of tests in a very small place.
I'll show you in a moment that the stack of paper there
would probably hold something like
100,000 tests, something of that kind.
And then finally, a point that you don't think of so much
in developed world medicine,
it eliminates sharps.
And what sharps means in needles, things that stick.
If you've taken a sample of someone's blood
and the someone might have hepatitis C,
you don't want to make a mistake and stick it in you.
It just, you don't want to do that.
So, how do you dispose of that? It's a problem everywhere.
And here you simply burn it.
So, it's a sort of a practical approach
to starting on things.
Now, you say, if paper is a good idea,
other people have surely though of it.
And the answer is, of course, yes.
Those half of you, roughly,
who are women,
at some point may have had a pregnancy test.
And the most common of these
is in a device that looks like the thing on the left.
It's something called a lateral flow immunoassay.
And in that particular test
urine, either containing
a hormone called HCG does or does not
flow across a piece of paper.
And there are two bars. One bar indicates that the test is working.
And if the second bar shows up, you're pregnant.
This is a terrific kind of test in a binary world.
And the nice thing about pregnancy
is either you are pregnant or you're not pregnant.
You're not partially pregnant or thinking about being pregnant
or something of that sort.
So, it works very well there.
But it doesn't work very well when you need more quantitative information.
There are also dipsticks.
But if you look at the dipsticks, they're for
another kind of urine analysis.
There are an awful lot of colors and things like that.
What do you actually do about that in a difficult circumstance?
So, the approach that we started with, is to ask,
is it really practical to make things of this sort?
And that problem is now, in a purely engineering way, solved.
And the procedure that we have is simply to start with paper.
You run it through a new kind of printer called a wax printer.
The wax printer does what looks like printing.
It is printing. You put that on, you warm it a little bit.
The wax prints through so it absorbs into the paper.
And you end up with the device that you want.
The printers cost 800 bucks now.
They'll make, we estimate that if you were to run them 24 hours a day
they'd make about 10 million tests a year.
So, it's a solved problem. That particular problem is solved.
And there is an example of the kind of thing that you see.
That's on a piece of 8 by 12 paper.
That takes about two seconds to make.
And so I regard that as done.
There is a very important issue here,
which is that because it's a printer,
a color printer, it prints colors. That's what color printers do.
I'll show you in a moment, that's actually quite useful.
Now, the next question that you would like to ask
is what would you like to measure? What would you like to analyze?
And the thing which you'd most like to analyze,
we're a fair distance from.
It's what's called "fever of undiagnosed origin."
Someone comes into the clinic,
they have a fever, they feel bad, what do they have?
Do they have T.B.? Do they have AIDS?
Do they have a common cold?
The triage problem. That's a hard problem
for reasons that I won't go through.
There are an awful lot of things that you'd like to distinguish among.
But then there are a series of things,
AIDS, hepatitis, malaria,
TB, others.
And simpler ones such as guidance of treatment.
Now even that is more complicated than you think.
A friend of mine works in trans-cultural psychiatry.
And he is interested in the question of
why people do and don't take their meds.
So, Dapsone, or something like that,
you have to take it for a while.
There is a wonderful story of talking to a villager in India.
And saying, "Have you taken your Dapsone?" "Yes."
"Have you taken it every day?" "Yes."
"Have you taken if for a month?" "Yes."
What the guy actually meant
was that he'd fed a 30 day dose of Dapsone
to his dog, that morning.
(Laughter)
He was telling the truth. Because
in a different culture,
the dog is a surrogate for you,
you know, "today," "this month," "since the rainy season,"
there are lots of opportunities for misunderstanding.
And so an issue here is to
in some cases to figure out
how to deal with matters that seem uninteresting,
like compliance.
Now, take a look at what a typical test looks like.
Prick a finger, you get some blood,
about 50 microliters.
That's about all you're going to get.
Because you can't use the usual sort of systems.
You can't manipulate it very well,
although I'll show something about that in a moment.
So, you take the drop of blood, no further manipulations.
You put it on a little device.
The device filters out the blood cells, lets the serum go through,
and you get a series of colors
down in the bottom there.
And the colors indicate disease or normal.
But even that is complicated.
Because to you, to me, colors might indicate normal.
But after all we're all suffering from
probably an excess of education.
What you do about something which requires
quantitative analysis?
And so the solution that we and many other people
are thinking about there,
and at this point there is a dramatic flourish,
and out comes the universal solution to everything these days,
which is a cell phone. In this particular case, a camera phone.
They are everywhere, six billion a month, in India.
And the idea is that what one does,
is to take the device.
You dip it. You develop the color.
You take a picture. The picture goes to a central laboratory.
You don't have to send out a doctor.
You send out somebody who can just take the sample.
And in the clinic either a doctor, or ideally a computer
in this case, does the analysis.
Turns out to work actually quite well, particularly when your
color printer has printed the color bars
that indicate how things work.
So, my view of the health care worker of the future
is not a doctor,
but an 18 year old, otherwise unemployed
who has two things. He has a backpack full of these tests,
and a lancet to occasionally take a blood sample,
and an AK47.
And these are the things that get him through his day.
There is another very interesting connection here.
And that is that what one wants to do
is to pass through useful information
over what is generally a pretty awful telephone system.
It turns out there is an enormous amount of information
already available on that subject, which is the Mars rover problem.
How do you get back an accurate view of the color on Mars,
if you have a really terrible bandwidth to do it with?
And the answer is not complicated
but it's one which I don't want to go through here,
other than to say that the communication systems
for doing this are really pretty well understood.
Also, a fact which you may not know,
is that the compute capability of this thing
is not so different from the compute capability
of your desktop computer.
This is a fantastic device which is only beginning to be tapped.
I don't know whether the idea of one computer, one child
makes any sense. Here is the computer of the future.
Because this screen is already there and they're ubiquitous.
Alright now let me show you just a little bit about advanced devices.
And we'll start by posing a little problem.
What you see here is another centimeter sized device.
And the different colors are different colors of dye.
And you notice something which might strike you as
a little bit interesting,
which is the yellow seems to disappear,
get through the blue, and then get through the red.
How does that happen? How do you make something flow through something?
And, of course the answer is, "You don't."
You make it flow under and over.
But now the question is, how do you make it flow
under and over in a piece of paper?
And the answer is that what you do,
and the details are not terribly important here,
is to make something more elaborate,
you take several different layers of paper,
each one containing its own little fluid system,
and you separate them by pieces of,
literally, double sided carpet tape,
the stuff you use to stick the carpets onto the floor.
And the fluid will flow from one layer into the next.
It distributes itself, flows through further holes,
distributes itself.
And what you see at the lower right-hand side there
is a sample in which a single sample
of blood has been put on the top,
And it has gone through and distributed itself
into these 16 holes on the bottom,
in a piece of paper, basically it looks like a chip,
two pieces of paper thick.
And in this particular case we were just interested in
the replicability of that.
But that is, in principle, the way you solve
the "fever of unexplained origin" problem.
Because each one of those spots then becomes
a test for a particular set of markers
of disease.
And this will work in due course.
And here is an example of a slightly more complicated device.
There is the chip.
You dip in a corner. The fluid goes into the center.
It distributes itself out into these various
wells or holes, and turns color.
And all done with paper and carpet tape.
So, I think it's as low-cost
as we're likely to be able to come up and make things.
Now, I have one last, two last little stories
to tell you, in finishing off this business.
This is one. One of the things that one does occasionally
need to do is to separate blood cells from serum.
And the question was,
here we do it by taking a sample.
We put it in a centrifuge.
We spin it, and you get blood cells out. Terrific.
What happens if you don't have an electricity,
and a centrifuge, and whatever?
And we thought for a while of how you might do this.
And the way, in fact, you do it, is what's shown here.
You get an eggbeater,
which is everywhere. And you saw off a blade.
And then you take tubing,
and you stick it on that. You put the blood in. You spin it.
Somebody sits there and spins it.
It works really really well.
And we said that we did the physics of eggbeaters
and self aligning tubes and all the rest of that kind of thing,
sent it off to a journal.
We were very proud of this, particularly the title
which was "Eggbeater as Centrifuge."
(Laughter)
And we sent it off, and by return mail it came back.
I called up the editor and I said,
"What's going on? How is this possible?"
The editor said, with enormous disdain,
"I read this.
And we're not going to publish it, because we only
publish science."
And it's an important issue
because it means that we have to,
as a society,
think about what we value.
And if it's just papers and phys rev letters,
we've got a problem.
Here is another example of something which is --
This is a little spectrophotometer.
It measures the absorption of light in a sample
The neat thing about this is, you have light source that flickers
on and off at about 1,000 hertz.
Another light source that detects that light at 1,000 hertz.
And so you can run this system in broad daylight.
It performs about equivalently
to a system that's in the order of
100,000 dollars.
It costs 50 dollars. We can probably make it for 50 cents,
if we put our mind to it.
Why doesn't somebody do it? And the answer is,
"How do you make a profit in a capitalist system, doing that?"
Interesting problem.
So, let me finish by saying
that we thought about this as a kind of engineering problem.
And we've asked, what is the scientific unifying idea here?
And we've decided that we should think about this
not so much in terms of cost,
but in terms of simplicity.
Simplicity is a neat word. And you've got to think about
what simplicity means.
I know what it is but I don't actually know what it means.
So, I actually was interested enough in this to put together
several groups of people.
And the most recent involved a couple of people at MIT,
one of them being an exceptionally bright kid
who is one of the very few people I would think of
who is an authentic genius.
We all struggled for an entire day to think about simplicity.
And I want to give you the answer of this
deep scientific thought.
(Laughter)
So, in a sense, you get what you pay for.
Thank you very much.
(Laughter)
Mobile Analytics