1. Po raz pierwszy odwiedzasz EDU. LEARN

    Odwiedzasz EDU.LEARN

    Najlepszym sposobem na naukę języka jest jego używanie. W EDU.LEARN znajdziesz interesujące teksty i videa, które dadzą Ci taką właśnie możliwość. Nie przejmuj się - nasze filmiki mają napisy, dzięki którym lepiej je zrozumiesz. Dodatkowo, po kliknięciu na każde słówko, otrzymasz jego tłumaczenie oraz prawidłową wymowę.

    Nie, dziękuję
  2. Mini lekcje

    Podczas nauki języka bardzo ważny jest kontekst. Zdjęcia, przykłady użycia, dialogi, nagrania dźwiękowe - wszystko to pomaga Ci zrozumieć i zapamiętać nowe słowa i wyrażenia. Dlatego stworzyliśmy Mini lekcje. Są to krótkie lekcje, zawierające kontekstowe slajdy, które zwiększą efektywność Twojej nauki. Są cztery typy Mini lekcji - Gramatyka, Dialogi, Słówka i Obrazki.

    Dalej
  3. Wideo

    Ćwicz język obcy oglądając ciekawe filmiki. Wybierz temat, który Cię interesuje oraz poziom trudności, a następnie kliknij na filmik. Nie martw się, obok każdego z nich są napisy. A może wcale nie będą Ci one potrzebne? Spróbuj!

    Dalej
  4. Teksty

    Czytaj ciekawe artykuły, z których nauczysz się nowych słówek i dowiesz więcej o rzeczach, które Cię interesują. Podobnie jak z filmikami, możesz wybrać temat oraz poziom trudności, a następnie kliknąć na wybrany artykuł. Nasz interaktywny słownik pomoże Ci zrozumieć nawet trudne teksty, a kontekst ułatwi zapamiętanie słówek. Dodatkowo, każdy artykuł może być przeczytany na głos przez wirtualnego lektora, dzięki czemu ćwiczysz słuchanie i wymowę!

    Dalej
  5. Słowa

    Tutaj możesz znaleźć swoją listę "Moje słówka", czyli funkcję wyszukiwania słówek - a wkrótce także słownik tematyczny. Do listy "Moje słówka" możesz dodawać słowa z sekcji Videa i Teksty. Każde z słówek dodanych do listy możesz powtórzyć później w jednym z naszych ćwiczeń. Dodatkowo, zawsze możesz iść do swojej listy i sprawdzić znaczenie, wymowę oraz użycie słówka w zdaniu. Użyj naszej wyszukiwarki słówek w części "Słownictwo", aby znaleźć słowa w naszej bazie.

    Dalej
  6. Lista tekstów

    Ta lista tekstów pojawia się po kliknięciu na "Teksty". Wybierz poziom trudności oraz temat, a następnie artykuł, który Cię interesuje. Kiedy już zostaniesz do niego przekierowany, kliknij na "Play", jeśli chcesz, aby został on odczytany przez wirtualnego lektora. W ten sposób ćwiczysz umiejętność słuchania. Niektóre z tekstów są szczególnie interesujące - mają one odznakę w prawym górnym rogu. Koniecznie je przeczytaj!

    Dalej
  7. Lista Video

    Ta lista filmików pojawia się po kliknięciu na "Video". Podobnie jak w przypadku Tekstów, najpierw wybierz temat, który Cię interesuje oraz poziom trudności, a następnie kliknij na wybrane video. Te z odznaką w prawym górnym rogu są szczególnie interesujące - nie przegap ich!

    Dalej
  8. Dziękujemy za skorzystanie z przewodnika!

    Teraz już znasz wszystkie funkcje EDU.LEARN! Przygotowaliśmy do Ciebie wiele artykułów, filmików oraz mini lekcji - na pewno znajdziesz coś, co Cię zainteresuje!

    Teraz zapraszamy Cię do zarejestrowania się i odkrycia wszystkich możliwości portalu.

    Dziękuję, wrócę później
  9. Lista Pomocy

    Potrzebujesz z czymś pomocy? Sprawdź naszą listę poniżej:
    Nie, dziękuję

Już 62 440 użytkowników uczy się języków obcych z Edustation.

Możesz zarejestrować się już dziś i odebrać bonus w postaci 10 monet.

Jeżeli chcesz się dowiedzieć więcej o naszym portalu - kliknij tutaj

Jeszcze nie teraz

lub

Poziom:

Wszystkie

Nie masz konta?

Cosmic Journeys: Supermassive Black Hole in the Milky Way Galaxy


Poziom:

Temat: Nauka i technologia

From a distance, our galaxy would look something like this.
A flat spiral, some 100,000 light years across, with pockets of gas, clouds of dust, and about
400 billion stars rotating around the galaxy's center.
That center - bulging up and out of the galactic disk - is tightly packed with stars.
Thick dust and blinding starlight have long obscured our vision into the mysterious inner
regions of this so-called "bulge."
And yet, the clues have been piling up, that something important...something strange...
is going on in there.
The first to take notice was the physicist Karl Jansky back in the 1930s.
He was asked by his employer, Bell Telephone Labs, to investigate sources of static that
might interfere with what it saw as the killer app of its time... radio voice transmissions.
Using this ungainly radio receiver... Jansky methodically scanned the airwaves. He documented
thunderstorms, near and far... and another signal he could not explain.
It sounded like steam - a hiss of radio noise. Jansky narrowed it to a spot in the constellation
of Sagittarius, in the direction of the center of the galaxy.
Located within a larger pattern of radio emissions... ... Jansky's sighting would become known
as Sagittarius A*.
The word of Jansky's finding got out. He assured the public that it was not aliens seeking
contact.
But that's just about all anyone could say... for over three decades.
Then Erik Becklin got on the case.
Becklin is one of those rare researchers whose curiosity and determination push our understanding
to a whole new level.
It was the 1960's and astronomy, like society, was in a period of ferment. Startling new
observations were being made... and new interpretations were in the air.
Quasars had just been discovered... extremely bright beacons of light from deep space. Were
they coming from the centers of distant galaxies? And what powerful objects were generating
them?
To study an event at the center of a galaxy, you have locate it. Young Becklin first took
aim at our neighboring galaxy, Andromeda.
In ultraviolet light, you can see a dense glow in the middle. Becklin found the point
where the light reaches peak intensity... and marked it as the Center.
From our orientation in space, all of the Andromeda galaxy is in full view.
But our galaxy is a different story. We live inside it, of course. Becklin had to find
a way to see through all the dust and gas that obscure our line of sight into the center.
So he went to a military contractor...
...and obtained a device that reads infrared light... whose wavelengths are similar to
the distances between particles in a dust cloud, allowing them to move right through.
Becklin began measuring the brightness of the light as it rose to a peak... marking
the location of the galactic center.
Pinpointing this site would now allow astronomers to begin probing for details with a new generation
of powerful telescopes... to peer into the bright lights... the forbidden zones... deep
in the heart of the Milky Way.
Becklin wasn't the only astronomer interested in the galactic center.
Reinhardt Genzel, and a team based at the Max Planck Institute for Extraterrestrial
Physics in Germany, began a similar campaign in 1990... from the New Technology Telescope
in the mountains of Chile.
A few years later, in 1993, high atop Hawaii's Mauna Kea volcano...
Eric Becklin and colleagues, including Andrea Ghez, began using the newly christened Keck
Telescope. The American and German groups shared the same goal... to pinpoint the precise
location of Sagittarius A*, and find out what it is.
Because the object is too small to see... at 26,000 light years away... they would study
it by tracking the orbits of stars around it.
Even seeing them would take the sensitivity of Keck's wide aperture; an instrument powerful
enough to detect a single candle flame at the distance of the moon...
Meanwhile, using a similar technique, astronomers had focused the new Hubble Space Telescope
on a different galaxy... a giant elliptical cloud of nearly a billion stars, lying some
50 million light years away called M87.
They tracked gas whipping around its center, figuring its speed at three million miles
per hour.... which led them to calculate the mass of whatever occupied M87's center...
at some 4 billion times that of our Sun.
Their measurement - first-ever of its kind - pointed to the presence of a black hole...
of truly supermassive proportions.... But it didn't conclusively prove its existence.
Back on Earth, the German and American teams each hoped that the proximity of the Milky
Way's center would allow them to...
...look through the curtains of swirling gas clouds...
...into the monster's lair...
...to conclusively prove, for the first time, the existence of supermassive black holes.
This search was part of a larger effort to unravel the complex terrain of the galactic
center, in search of clues to the origins and evolution of our galaxy.
Recently, using Hubble, astronomers documented vast arcs of gas heated up by ferocious winds
from large stars.
Capturing infrared light, the Spitzer Space Telescope, picked up the pervasive swirling
heat signatures of all these stars.
The Chandra X-ray space observatory recorded high-energy radiation mostly likely given
off by ultra-dense neutron stars and small black holes.
Based on Chandra data, scientists estimate that a swarm of 20,000 black holes inhabits
the inner three light years of the galactic center.
If there is a supermassive black hole in the center of it all, the teams would have to
show that it's confined to a very small volume... and that it has enough gravity to whip the
stars orbiting it to high speeds.
The light of these stars travels 26,000 light years to reach us, only to be blurred in the
last few miles as it hits the Earth's atmosphere. So both teams turned to a method designed
to sharpen it back up.
The idea is to snap thousands of pictures in a short time. Because the atmosphere is
in motion, a star's apparent position may shift from image to image. To hone in on the
star's true location, a computer averages the positions, and looks for correlations
in the wavelength of the stars' light.
Here are the stars they began tracking... clustered around the center of the galaxy.
The first few years' data allowed the teams to calculate the speeds of the stars... and
their rough trajectories around the center.
That allowed them to pinpoint the position of their target...
...as well as its gravitational pull. And that gave them its mass: roughly 3 million
times that of our Sun.
Because no other single object is known to weigh that much, it's strong evidence of a
black hole...
...but it's still not iron-clad proof.
These data, for example, don't rule out a dense concentration of stars packed into the
center... held there by their mutual gravity.
The proof the teams sought would have to wait for an extraordinary event.
In the early years of the new century, large telescopes around the world began to install
upgrades.
Most large new telescope mirrors these days are thin... designed to be mounted on metal
scaffolding.
Behind the mirrors, engineers install pistons and motors to subtly correct the shape of
the glass as changing temperatures deform it... or as atmospheric turbulence blurs the
incoming light.
Some have added lasers... designed to project an artificial star onto the upper atmosphere.
As turbulence causes its light to distort, a computer can use it to subtract the net
effect of that turbulence from the light of the real stars, bringing them back into focus.
This is a Keck image of the galactic center... without adaptive optics applied....
And with them. With this increase in sharpness...
...the teams were ready for what happened in 2002.
The German team had begun making observations at the new Very Large Telescope Array at the
Paranal Observatory in Northern Chile.
In the spring of that year, one of the stars they had been following, known as S2, made
a dramatic move.
S2 suddenly swooped around the center, accelerating to around 3 million kilometers per hour.
The American team saw it too.
It had come incredibly close to the suspected black hole ... about three times the distance
between the Sun and Pluto. If there had been a cluster of stars in there, S2's path and
its light would have wobbled. It did not!
This was the evidence the teams had sought. It showed that Sagittarius A* is a single
object... without doubt... a black hole.
You can argue whether that's definitive proof... but it's nothing short of spectacular.
This observation came at a time when astronomers had begun to believe that black holes play
an active role in the evolution of the universe.
They had found that giant black holes occupy the centers of nearly every large galaxy.
In fact, the larger the galaxy, the larger the black hole. That suggests that the two
must have evolved hand in hand, each shaping the life story of the other.
As matter flows into a black hole, it heats up to millions of degrees. Despite the black
hole's intense gravity, much of the inflowing matter blows off in fierce winds ... and powerful
jets roaring out of its poles.
The more matter that rushes in... the more the black hole pushes back out.
The force... and the heat... from active black hole outbursts can have the effect of limiting
a galaxy's growth ... by putting an end to starbirth ...and also pushing loose gas out
of its central region.
This has been going on since the earliest days of galaxy formation.
One result... a strict relationship has developed between the size of the black hole... and
the size of the galactic bulge that surrounds it.
Here in the Milky Way galaxy, is our own supermassive black hole still growing... and still shaping
its galactic surroundings?
Just as the black hole, Sagittarius A*, finally revealed its existence... it would now show
its true colors.
The year, 2001: scientists were working to commission the newly launched Chandra X-ray
space telescope.
They pointed the telescope at Sagittarius A*... and, by chance, at that moment, it erupted!
The teams on the ground began focusing on it for longer periods, hoping to see it happen
again.
And so they did... They saw what's now thought to be flares; outbursts that erupt when matter
builds up near the event horizon, before falling in.
A group of astronomers is now making plans to get an even closer look at these flares...
and for the first time ever, to directly glimpse a black hole.
To date, no single telescope on Earth has enough resolution to see something so small...
so far away.
Radio astronomers think they have a way. By linking observatories around the world, they
can create what amounts to an Earth-sized radio-telescope.
This simulation shows what they expect to see... just a few years from now. A supermassive
black hole in silhouette... framed by eruptions on its surface that travel around the monster
as it spins.
Perhaps images like these will shed light on a particular mystery: the flares appear
to be very weak...
...considering the amount of matter swirling around the galactic center.
What these flares seem to be showing us is that our black hole... and our galaxy... have
settled into a period of "semi-retirement."
But they are bound to become active again.
Observing with the Very Large Telescope in Chile, astronomers recently picked out a straggler
from the intergalactic wars of old.
They spotted, deep in the recesses of the galactic center, what's left of a smaller
galaxy that had been torn apart by the gravity of the Milky Way.
This group of stars is so densely packed that it's able to survive the tidal forces around
it. Eventually it will find its way into the galactic center... where doom awaits.
Most likely it will be swept into the torrent of gas and dust and stars that are destined
for the mouth of the monster.
Working in the cold, clear air of the Antarctica, one group of radio-astronomers has tried to
find out when the Milky Way's central black hole will begin feasting again.
Data from their South Pole Telescope has delivered signs of a disaster in the making.
A huge ring of gas looms beyond the galactic center. When it accumulates some 300 million
sun's worth of matter, it will reach a tipping point.
The cloud will begin to funnel into a second ring that orbits close to the center.
This inner ring will condense... then erupt with star formation...
... before spiraling down toward the ravenous black hole.
As the cloud falls into it, the black hole too will erupt in a blaze of glory visible
across much of the universe.
Based on these findings, the thinking is that outbursts like this repeat every 400 million
years or so.
Meanwhile, on one rocky outpost... a safe 25,000 light years from the turmoil at the
center of the galaxy... curiosity continues to reign.
We have found ways to track the patterns of change over billions of years that have shaped
our universe.
And yet sometimes... it's the small events that feed our sense of wonder.
Take the star S2, speeding around Sagittarius A*. In 2008 it made its way back to the exact
same spot where astronomers had begun tracking it.
That was the first time any object has been seen making a complete orbit around the center
of the Milky Way.
What will happen over the course of its next orbit?
No doubt, we'll answer many of the questions raised by this star and the supermassive companion
that whips it around.
Along the way, we're sure to see things we don't yet understand...
...that raise questions we cannot yet answer.
1
Mobile Analytics